Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy
Document Type
Journal Article
Publication Title
Science China Materials
ISSN
20958226
Publisher
Springer
School
School of Engineering
RAS ID
39651
Funders
Australian Research Council Fundamental Research Funds for the Central Universities Robinson Fellowship Scheme of the University of Sydney
Grant Number
ARC Number : DE170100053
Grant Link
http://purl.org/au-research/grants/arc/DE170100053
Abstract
© 2020, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature. The mechanical size effect of nanostructured, dual-phase CrCoNi medium-entropy alloy (MEA) was investigated by combining in-situ micro-compression testing with post-mortem electron microscopy analysis. The alloy possesses a superior yield strength up to ∼4 GPa, primarily due to its hierarchical microstructure including column nanograins, preferred orientation, a high density of planar defects and the presence of the hexagonal close packed (HCP) phase. While the yield strength of the alloy has shown size-independency, the deformation behaviour was strongly dependent on the sample size. Specifically, with decreasing the pillar diameters, the dominant deformation mode changed from highly localized and catastrophic shear banding to apparently homogeneous deformation with appreciable plasticity. This transition is believed to be governed by the size-dependent critical stress required for a shear band traversing the pillar and mediated by the competition between shear-induced softening and subsequent hardening mechanisms. In addition, an unexpected phase transformation from HCP to face-centered cubic (FCC) was observed in the highly localized deformation zones, leading to strain softening that contributed to accommodating plasticity. These findings provide insights into the criticality of sample dimensions in influencing mechanical behaviors of nanostructured metallic materials used for nanoelectromechanical systems.
DOI
10.1007/s40843-020-1377-2
Access Rights
free_to_read
Comments
Chen, Y., An, X., Zhou, Z., Munroe, P., Zhang, S., Liao, X., & Xie, Z. (2021). Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy. Science China Materials, 64, 209-222. https://doi.org/10.1007/s40843-020-1377-2