Document Type
Journal Article
Publication Title
Journal of Colloid and Interface Science
Volume
588
First Page
315
Last Page
325
Publisher
Elsevier
School
School of Engineering
RAS ID
32942
Funders
ECU-HEC Joint Scholarship
Abstract
© 2020 Elsevier Inc. Hypothesis: Millions of tons of CO2 are stored in CO2 geological storage (CGS) formations (depleted oil reservoirs and deep saline aquifers) every year. These CGS formations naturally contain small concentrations of water-soluble organic components in particular humic acid (HA), which may drastically affect the rock wettability - a significant factor determining storage capacities and containment security. Hence, it is essential to characterise the effect of humic acid concentration on CO2-wettability and its associated impact on storage capacity. Experimental: To achieve this, we measured advancing and receding contact angles at reservoir conditions using the pendant drop tilted plate method for various humic acid concentrations (1, 10, and 100 mg/L) as a function of pressure (0.1–25 MPa), temperature (303–333 K), and brine salinity (0–0.3 M NaCl). Further, the influence of humic acid adsorption on the mineral's surface was examined by several independent techniques. Results: Our results demonstrate that humic acid significantly changes rock wettability from water-wet (0–50°) towards CO2-wet (90–110°). An increase in pressure, temperature, and salinity had a similar effect. Humic acid adsorption also increased the surface roughness of the substrates. We conclude that even trace amounts of humic acid (i.e. 1 mg/L), which exist in storage aquifers, significantly increase CO2-wettability and thus reduce structural and residual trapping capacities. Therefore, it is pertinent to account for these humic acid concentrations to de-risk CGS projects.
DOI
10.1016/j.jcis.2020.12.058
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Civil and Environmental Engineering Commons, Petroleum Engineering Commons, Physical Sciences and Mathematics Commons
Comments
This is an author's accepted manuscript of: Ali, M., Awan, F. U. R., Ali, M., Al-Yaseri, A., Arif, M., Sánchez-Román, M., ... Iglauer, S. (2021). Effect of humic acid on CO2-wettability in sandstone formation. Journal of Colloid and Interface Science, 588, 315-325. https://doi.org/10.1016/j.jcis.2020.12.058