High-Frequency News Flow and States of Asset Volatility
Document Type
Book Chapter
Publisher
Elsevier
Place of Publication
Amsterdam
Editor(s)
Gregoriou, G.N.
Faculty
Faculty of Business and Law
School
School of Business
RAS ID
20510
Abstract
This chapter examines the relationship between high-frequency news flow and the states of asset return volatility. To estimate asset return volatility and smoothing probability, we first apply the Markov Regime-Switching Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model. Second, the different states of asset return volatility are identified by comparing the previously generated smoothing probability with certain thresholds. Subsequently, we employ discrete choice models to investigate the impact of high-frequency news flow on the volatility states of hourly returns of the constituent stocks in the Dow Jones Composite Average (DJN 65). Our dataset for high-frequency news flows is constructed from the new RavenPack Dow Jones News Analytics database that captures >1200 types of firm-specific and macroeconomic news releases at high frequencies. Estimated results show that different types of news flows have varying significant effects on the likelihood of volatility states of intraday asset returns.
DOI
10.1016/B978-0-12-802205-4.00021-X
Access Rights
subscription content
Comments
Ho, K., Shi, Y., & Zhang, Z. (2015) High-Frequency News Flow and States of Asset Volatility. In Gregoriou, G.N. (Ed.), The handbook of high frequency trading (pp359-383). Amsterdam: Elsevier. Available here