Document Type
Journal Article
Publication Title
Journal of Rock Mechanics and Geotechnical Engineering
Publisher
Elsevier
School
School of Engineering
RAS ID
36030
Funders
Higher Education Commission, Government of the Islamic Republic of Pakistan, Edith Cowan University
Abstract
In the recent past, the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported. This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings. The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect. It is found that for the same amount of reinforcement material, the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models. The efficiency of wraparound reinforced model increased with the increase in load amplitude and the rate of total cumulative settlement substantially decreased with the increase in number of load cycles. The wraparound reinforced model has shown about 45% lower average total settlement in comparison to unreinforced model, while the double-layer reinforced model has about 41% lower average total settlement at the cost of approximately twice the material and 1.5 times the occupied land width ratio. Moreover, wraparound models have shown much greater stability in comparison to their counterpart models when subjected to incremental repeated loading. © 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
DOI
10.1016/j.jrmge.2021.02.001
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
Raja, M. N. A., & Shukla, S. K. (2021). Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 899-911. https://doi.org/10.1016/j.jrmge.2021.02.001