Author Identifier

Paul M Radley

https://orcid.org/0000-0003-0315-2790

Date of Award

2019

Document Type

Thesis

Publisher

Edith Cowan University

Degree Name

Doctor of Philosophy

School

School of Science

First Supervisor

Dr Robert Davis

Second Supervisor

Dr David Blake

Abstract

Climate change has been a subject of numerous studies. While findings suggest that most biological taxa will be affected by its manifestations, aspects of a species life history may increase its susceptibility to climate change. Given their reliance on environmental sources of heat to incubate their eggs, I examined the vulnerability to climate change of the avian family Megapodiidae. I also assessed habitat use, susceptibility to sea level rise, and the effect of introduced rats and tourist presence, as added stressors to climate change, on the Micronesian Megapode (Megapodius

laperouse senex) in Palau.

Based on available literature, I employed a trait-based assessment to investigate the vulnerability of 21 species of megapodes to climate change. All species were predicted to experience at least a 2°C increase in mean annual temperature, 12 may experience a moderate or greater fluctuation in rainfall, and 16 would be exposed to rising seas. While the most vulnerable megapodes are intrinsically rare and range restricted, mound nesting species may be more resilient to climate change than others.

I examined breeding and foraging habitat use by the mound nesting megapode in the Rock Islands Southern Lagoon Conservation Area (RISL), where it almost exclusively uses low-lying littoral strand habitat for breeding. Megapodes preferentially selected sites that were 1) relatively close to shore, 2) contained large trees, and 3) exhibited greater canopy heights than the surrounding forest. The subspecies foraged in a non-preferential manner and used all littoral habitat with no apparent influence of dominant plant species composition.

Using GIS and the latest spatial data, I modelled the effect of three currently

accepted scenarios (0.52 m, 0.98 m, and 1.9 m) of sea level rise on their known breeding habitat. The RISL is comprised of 3,857.5 ha of forested cover of which megapodes used 120.8 ha (3.1%) for breeding, with an additional 25.3 ha potentially available to them. Megapodes may lose at least 32.5% to 43.3% of known breeding habitat and 25.7% to 31.3% of potential habitat to inundation, respectively.

Using passive chew-tag and call playback surveys, I examined whether introduced rats and tourist presence may negatively affect megapodes in the RISL. Rat detection probability and site occupancy were significantly higher on tourist visited iv (89% and 99%, respectively) compared to tourist-free islands (52% and 73%). I detected significantly more megapodes at stations on tourist-free islands (93%) than tourist visited (47%), but relative abundance was not significantly different between island types. My findings suggested no significant relationship between rats and megapodes, a negative relationship between tourist presence and megapodes, and augmentation of rat populations by tourist presence.

I compared the ecology of, and IUCN listed threats for, Micronesian Megapodes in Palau with those in the Mariana Islands. I proposed both the inclusion of an additional climate change related threat based on my sea level rise modelling, and new ranking of all IUCN threats by subspecies. Lastly, I proposed research and data acquisition priorities necessary to fill current gaps in the knowledge of megapodes in Palau and facilitate its long-term conservation.

Access Note

Access to Chapters 2 and 4 of this thesis is not available.

Share

Paper Location

 
COinS