Author Identifiers

Kathryn McMahon

https://orcid.org/0000-0003-4355-6247

Publication Date

2018

Document Type

Dataset

Publisher

Dryad

School or Research Centre

School of Science

Description

Coastal development is contributing to ongoing declines of ecosystems globally. Consequently, understanding the risks posed to these systems, and how they respond to successive disturbances, is paramount for their improved management. We study the cumulative impacts of maintenance dredging on seagrass ecosystems as a canonical example. Maintenance dredging causes disturbances lasting weeks to months, often repeated at yearly intervals. We present a risk-based modelling framework for time varying complex systems centred around a dynamic Bayesian network (DBN). Our approach estimates the impact of a hazard on a system's response in terms of resistance, recovery and persistence, commonly used to characterise the resilience of a system. We consider whole-of-system interactions including light reduction due to dredging (the hazard), the duration, frequency and start time of dredging, and ecosystem characteristics such as the life-history traits expressed by genera and local environmental conditions. The impact on resilience of dredging disturbances is evaluated using a validated seagrass ecosystem DBN for meadows of the genera Amphibolis (Jurien Bay, WA, Australia), Halophila (Hay Point, Qld, Australia) and Zostera (Gladstone, Qld, Australia). Although impacts varied by combinations of dredging parameters and the seagrass meadows being studied, in general, 3 months of duration or more, or repeat dredging every 3 or more years, were key thresholds beyond which resilience can be compromised. Additionally, managing light reduction to less than 50% can significantly decrease one or more of loss, recovery time and risk of local extinction, especially in the presence of cumulative stressors. Synthesis and applications. Our risk-based approach enables managers to develop thresholds by predicting the impact of different configurations of anthropogenic disturbances being managed. Many real-world maintenance dredging requirements fall within these parameters, and our results show that such dredging can be successfully managed to maintain healthy seagrass meadows in the absence of other disturbances. We evaluated opportunities for risk mitigation using time windows; periods during which the impact of dredging stress did not impair resilience.

Additional Information

This dataset was originally published at:

https://doi.org/10.5061/dryad.f71vq

DOI

10.5061/dryad.f71vq

File Format(s)

.xls

File Size

860 KB

Viewing Instructions

Usage Notes

Validation data

Validation data used to validate the DBN model for Amphibolis in Jurien Bay, Halophila at Hay Point, and Zostera at Gladstone (supporting information S4 through S6, respectively). data_supp.xlsx

Lateral Growth from Existing Individuals

DBN CPT (visualised in supporting information S7)

Physiological Status of Plants

DBN CPT (visualised in supporting information S7)

Rate of Recovery in Shoot Density

DBN CPT (visualised in supporting information S7)

Recruitment Rate from Seeds

DBN CPT (visualised in supporting information S7)

Seed Density

DBN CPT (visualised in supporting information S7)

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Public Domain Dedication 1.0 License.

Share

Article Location

 
COinS