Author Identifiers

Robert Czarnik

https://orcid.org/0000-0001-9168-5030

Kathryn McMahon

https://orcid.org/0000-0003-4355-6247

Publication Date

2018

Document Type

Dataset

Publisher

Dryad

School or Research Centre

Centre for Marine Ecosystems Research

Description

Aim: The aim was to quantify latitudinal patterns in seagrass–herbivore interactions in the context of a warming climate. Location: We carried out a global meta‐analysis combined with a field experiment across 1,700 km and 12° of latitude in Western Australia. Time period: 1984–2014. Major taxa studied: Seagrasses. Methods: We first synthesized the global literature on herbivore exclusion experiments in seagrasses to test whether differences in herbivore impacts are related to latitude and sea surface temperature. We then quantified leaf production and consumption rates in the field at nine meadows of the seagrass Amphibolis antarctica across 1,700 km, from tropical to temperate latitudes. Seagrass biomass and nutritional traits (nitrogen, C:N, phenolics) were also measured. Results: Our meta‐analysis showed that herbivores had a similar net impact on seagrasses across 37° of absolute latitude, and there was little variation in herbivore exclusion effects at different temperatures. In the field, rates of both production and consumption of seagrass were greatest in the tropics and decreased with latitude. Seagrass nutritional quality was lowest in the tropics, where fish removed c. 30% of primary production. Consumption of the more nutritious temperate seagrasses was lower overall but also highly variable and dominated by invertebrates. Main conclusions: In tropical latitudes, faster growth rates compensated for greater consumption of A. antarctica by herbivores. This resulted in similar net impacts of herbivores across latitudes, because higher latitude plants grew more slowly but also suffered less herbivory. This match between consumption and production rates might explain the global patterns derived from the literature, which show little latitudinal variation in the effects of consumers on seagrasses. As ocean temperatures continue to rise and overall herbivory levels are expected to increase in temperate regions, the survival of seagrass meadows in higher latitudes will depend on the ability of plants to increase growth at compensatory rates.

Additional Information

This dataset was originally published at:

https://doi.org/10.5061/dryad.n386bb2

DOI

10.5061/dryad.n386bb2

Language

Eng

File Format(s)

.xls

File Size

46 KB

Viewing Instructions

Verges et al 2018 ALL DATA

Collected in the field on tagged shoots or using 25 x 25 cm2 quadrats (for density and biomass data)

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Public Domain Dedication 1.0 License.

Share

Article Location

 
COinS