Document Type

Journal Article

Publication Title

ACS Omega

Publisher

ACS

School

Graduate Research School

RAS ID

61979

Funders

Mehran University of Engineering and Technology (MUET), Jam-shoro, Sindh, Pakistan

Comments

Abbas, G., Tunio, A. H., Memon, K. T., Mahesar, A. A., Memon, F. H., & Abbasi, G. R. (2023). Modification of cellulose ether with organic carbonate for enhanced thermal and rheological properties: Characterization and analysis. ACS Omega, 8(28), 25453-25466. https://doi.org/10.1021/acsomega.3c02974

Abstract

Reduction in viscosity at higher temperatures is the main limitation of utilizing cellulose ethers in high thermal reservoir conditions for petroleum industry applications. In this study, cellulose ether (hydroxyethyl methyl cellulose (HEMC)) is modified using organic carbonates, i.e., propylene carbonate (PC) and diethyl carbonate (DEC), to overcome the limitation of reduced viscosity at high temperatures. The polymer composites were characterized through various analytical techniques, including Fourier-transform infrared (FTIR), H-NMR, X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), -potential measurement, molecular weight determination, and rheology measurements. The experimental results of structural and morphological characterization confirm the modification and formation of a new organic carbonate-based cellulose ether. The thermal analysis revealed that the modified composites have greater stability, as the modified samples demonstrated higher vaporization and decomposition temperatures. -potential measurement indicates higher stability of DEC- and PC-modified composites. The relative viscometry measurement revealed that the modification increased the molecular weight of PC- and DEC-containing polymers, up to 93,000 and 99,000 g/moL, respectively. Moreover, the modified composites exhibited higher levels of stability, shear strength and thermal resistance as confirmed by viscosity measurement through rheology determination. The observed increase in viscosity is likely due to the enhanced inter- and intramolecular interaction and higher molecular weight of modified composites. The organic carbonate performed as a transesterification agent that improves the overall properties of cellulose ether (HEMC) at elevated temperatures as concluded from this study. The modification approach in this study will open the doors to new applications and will be beneficial for substantial development in the petroleum industry.

DOI

10.1021/acsomega.3c02974

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Chemistry Commons

Share

 
COinS