Abstract
Introduction: Artificial intelligence is emerging in dental education, but its use in preclinical assessment remains limited. Large language models like ChatGPT® V4.5 enable non-programmers to build AI models through real-time guidance, addressing the coding barrier. Aim: This study aims to empower clinician-led, low-cost, AI-driven assessment models in preclinical restorative dentistry and to evaluate the technical feasibility of using a neural network to score 3D cavity preparations. Methods: Twenty mandibular molars (tooth 46), each with two carious lesions, were prepared and scored by two expert examiners using a 20-point rubric. The teeth were scanned with a Medit i700® and exported as.OBJ files. Using Open3D, the models were processed into point clouds. With ChatGPT’s guidance, the clinician built a PointNet-based neural model in PyTorch, training it on 20 cases and testing it on 10 unseen preparations. Results: In training, the model achieved an MAE of 0.82, RMSE of 1.02, and Pearson’s r = 0.88, with 66.7% and 93.3% of the predictions within ±5% and ±10% of the examiner scores, respectively. On the test set, it achieved an MAE of 0.97, RMSE of 1.16, and r = 0.92, with 50% and 100% of scores within ±5% and ±10%, respectively. These results show a strong alignment with examiner scores and an early generalizability for scoring preclinical cavity preparations. Conclusions: This study confirms the feasibility of clinician-led, low-cost AI development for 3D cavity assessment using ChatGPT, even without prior coding expertise.
Document Type
Journal Article
Date of Publication
11-1-2025
Volume
13
Issue
11
Publication Title
Dentistry Journal
Publisher
MDPI
School
School of Engineering
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
El-Hakim, M., Khaled, H., Fawzy, A., & Anthonappa, R. (2025). Clinician-Led development and feasibility of a neural network for assessing 3D dental cavity preparations assisted by conversational AI. Dentistry Journal, 13(11), 531. https://doi.org/10.3390/dj13110531